Bilinear Attention Networks for VizWiz Grand Challenge 2018

Jin-Hwa Kim¹, Yongseok Choi¹, Sungeun Hong¹ Jaehyun Jun², Byoung-Tak Zhang^{2,3}

¹SK T-Brain, ²Seoul National University, ³Surromind Robotics

TBCain

Introduction

- current state-of-the-art single model.
- draw a strong baseline for this challenge using this model.
- talk of 2018 VQA challenge workshop at CVPR 2018.

 We use Bilinear Attention Networks (BAN) for VizWiz grand challenge, which was the runners-up model in 2018 VQA Challenge and this is the

VizWiz is more challenging and applicable than VQA; however we want to

Notice that a major part of this presentation is borrowed from the invited

Objective

- Introducing bilinear attention
 - Interactions between words and visual concepts are meaningful
 - low-rank bilinear pooling
- Residual learning of attention

- Proposing an efficient method (with the same time complexity) on top of

- Residual learning with attention mechanism for incremental inference

Preliminary

- Question embedding (fine-tuning)
 - Use the all outputs of GRU (every time steps)
 - $X \in \mathbb{R}^{N \times \rho}$ where N is hidden dim., and $\rho = |\{x_i\}|$ is # of tokens
- Image embedding (fixed bottom-up-attention)
 - Select 10-100 detected objects (rectangles) using pre-trained Faster RCNN, to extract *rich* features for each object (1600 classes, 400 attributes)
 - $\mathbf{Y} \in \mathbb{R}^{M \times \phi}$ where M is feature dim., and $\phi = |\{y_i\}|$ is # of objects

https://github.com/peteanderson80/bottom-up-attention

Low-rank Bilinear Pooling

• Bilinear model and its approximation (Wolf et al., 2007, Pirsiavash et al., 2009) $\mathbf{U}_{i}\mathbf{V}_{i}^{T}\mathbf{y} = \mathbb{1}^{T}(\mathbf{U}_{i}^{T}\mathbf{x} \circ \mathbf{V}_{i}^{T}\mathbf{y})$

$$f_i = \mathbf{x}^T \mathbf{W}_i \mathbf{y} \approx \mathbf{x}^T \mathbf{U}$$

• Low-rank bilinear pooling (Kim et al., 2017) $\mathbf{f} = \mathbf{P}^T (\mathbf{U}^T \mathbf{x} \circ \mathbf{V}^T \mathbf{y})$

tensors).

For vector output, instead of using three-dimensional tensors **U** and **V**, replace the vector of ones with a pooling matrix **P** (use three two-dimensional

Unitary Attention

- This pooling is used to get attention weights with a question embedding (single-channel) vector and visual feature vectors (multi-channel) as the two inputs.
- We call it unitary attention since a question embedding vector queried the feature vectors, *unidirectionally*.

Kim et al., 2017

Bilinear Attention Maps

- U and V are linear embeddings
- **p** is a learnable projection vector

Bilinear Attention Maps

 Exactly the same approach with low-rank bilinear pooling

element-wise multiplication

$$\mathcal{A} := \operatorname{softmax} \left(\left((\mathbb{1} \cdot \mathbf{p}^T) \circ \mathbf{X}^T \mathbf{U} \right) \mathbf{V}^T \mathbf{Y} \right)$$

$$A_{i,j} = \mathbf{p}^T \big((\mathbf{U})^T \big) \big(\mathbf{U}^T \big) \big)$$

 $U^T \mathbf{X}_i) \circ (\mathbf{V}^T \mathbf{Y}_j)).$

Bilinear Attention Maps

 Multiple bilinear attention maps are acquired by different projection vectors \mathbf{p}_{g} as:

 $\mathcal{A}_g := \operatorname{softmax} \left(\left(\left(\mathbb{1} \cdot \mathbf{p}_g^T \right) \circ \mathbf{X}^T \mathbf{U} \right) \mathbf{V}^T \mathbf{Y} \right)$ not-shared parameter

of K; *broadcasting* in PyTorch let you avoid for-loop for this):

* broadcasting: automatically repeat tensor operations in api-level supported by Numpy, Tensorflow, Pytorch

• Each multimodal joint feature is filled with following equation (k is the index

each feature is pooled by low-rank bilinear approximation

One can show that this is equivalent to a bilinear attention model where

 $\mathbf{f}'_k = (\mathbf{X}^T \mathbf{U}')_k^T \mathcal{A} (\mathbf{Y}^T \mathbf{V}')_k$

 $\mathbf{f}'_k = \sum \ \sum \ \mathcal{A}_{i,j}(\mathbf{X}_i^T \mathbf{U}_k')(\mathbf{V}_k'^T \mathbf{Y}_j)$

 $\sum \mathcal{A}_{i,j} \mathbf{X}_i^T (\mathbf{U}_k' \mathbf{V}_k'^T) \mathbf{Y}_j$

low-rank bilinear pooling

- One can show that this is equivalent to a bilinear attention model where each feature is pooled by low-rank bilinear approximation
- Low-rank bilinear feature learning inside bilinear attention

$$\mathbf{f}'_{k} = \sum_{i=1}^{|\{\mathbf{x}_{i}\}|} \sum_{\substack{j=1 \\ |\{\mathbf{x}_{i}\}|} |\{\mathbf{y}_{j}\}|} \\ = \sum_{i=1}^{|\{\mathbf{x}_{i}\}|} \sum_{\substack{j=1 \\ j=1}}^{|\{\mathbf{y}_{j}\}|}$$

 $\mathcal{A}_{i,j}(\mathbf{X}_i^T\mathbf{U}_k')(\mathbf{V}_k'^T\mathbf{Y}_j)$

 $\mathcal{A}_{i,j}\mathbf{X}_i^T(\mathbf{U}_k'\mathbf{V}_k'^T)\mathbf{Y}_j$

low-rank bilinear pooling

- One can show that this is equivalent to a bilinear attention model where each feature is pooled by low-rank bilinear approximation
- Low-rank bilinear feature learning inside bilinear attention
- Similarly to MLB (Kim et al., ICLR 2017), activation functions can be applied

Time Complexity

- matrix chain multiplication
- 190s/epoch

• Assuming that $M \ge N > K > \phi \ge \rho$, the time complexity of bilinear attention networks is O(KMφ) where K denotes hidden size, since BAN consists of

Empirically, BAN takes 284s/epoch while unitary attention control takes

• Largely due to the increment of input size for Softmax function, ϕ to $\phi \times \rho$

Residual Learning of Attention

• Residual learning exploits multiple attention maps (f_0 is X and $\{a_i\}$ is fixed to ones):

bilinear attention networks

Overview

After getting bilinear attention maps, we can stack multiple BANs.

Step 1. Bilinear Attention Maps

Step 2. Bilinear Attention Networks

Multiple Attention Maps

Single model on validation score for VQA 2.0

	Validation VQA 2.0 Score	+%
Bottom-Up (Teney et al., 2017)	63.37 ±0.21	
BAN-1	65.36 ±0.14	1.99
BAN-2	65.61 ±0.10	0.25
BAN-4	65.81 ±0.09	0.20
BAN-8	66.00 ±0.11	0.19
BAN-12	66.04 ±0.08	0.04

Residual Learning

BAN-4 (Residual)

 $\sum_{i} \text{BAN}_{i}(\mathbf{X}, \mathbf{Y}; A_{i})$ $= \prod_{i} \text{BAN}_{i}(\mathbf{X}, \mathbf{Y}; A_{i})$

BAN-4 (Sum)

BAN-4 (Concat)

Validation VQA 2.0 Score	+/-
65.81 ± 0.09	
64.78 ± 0.08	-1.03
64.71 ± 0.21	-0.07

Comparison with Co-attention

* The number of parameters is controlled (all comparison models have 32M parameters).

Comparison with Co-attention

* The number of parameters is controlled (all comparison models have 32M parameters).

Visualization

1st bilinear attention map

2nd bilinear attention map

Visualization

1st bilinear attention map

2nd bilinear attention map

VizWiz

Q: What is this?

A: shoes (shoes, boots, feet, unanswerable) Q: Surface look clean? Thank you.

A: yes (yes)

A: unanswerable (unanswerable)

Q: What is in this bottle?

A: shampoo (mouthrinse, mouthwash)

Flickr30k Entities

[/EN#40120/people A girl] in [/EN#40122/clothing a yellow tennis suit], [/ EN#40125/other green visor] and [/EN#40128/clothing white tennis shoes] holding [/EN#40124/other a tennis racket] in a position where she is going to hit [/EN#40121/other the tennis ball] .

Visual grounding task — mapping entity phrases to regions in an image

Flickr30k Entities

[/EN#38656/people A male conductor] wearing [/EN#38657/clothing all black] leading [/EN#38653/people a orchestra] and [/EN#38658/people choir] on [/ EN#38659/scene a brown stage] playing and singing [/EN#38664/other a musical number].

Visual grounding task — mapping entity phrases to regions in an image

2018 VizWiz Grand Challenge

Single model on test score

	Accuracy					Answerability	
	Overall	Yes/no	Number	Other	Unans	AP	F1
Q+I	13.7	59.8	4.5	14.2	7.0	71.7	64.8
FT	47.5	66.9	22.0	29.4	77.6	56.1	54.2
VizWiz	46.9	59.6	21.0	27.3	80.5	60.5	54.9
BAN (single)	51.6	68.1	17.9	31.5	85.3	58.8	71.0
BAN (ensemble)	52.0	69.1	19.1	31.6	86.2	_	-

VQA 2.0

Single model on test-dev score

2016 winner 2017 winner 2017 runner-up

Prior

Language-Only

MCB (ResNet)

Bottom-Up (FRCNN)

MFH (ResNet)

MFH (FRCNN)

BAN w/o Glove (Ours; FRCNN)

BAN (Ours; FRCNN)

BAN+Counter (Ours; FRCNN)

test-dev	Numbe
Zhang et al. (2018)	51.62
Ours	54.04

	+%	Test-dev VQA 2.0 Score	
		25.70	
	+18.52%	44.22	
	+17.74%	61.96	
	+3.36%	65.32	
	+0.48%	65.80	
	+2.96%	68.76	
attention mod	+0.76%	69.52	
	+0.14%	69.66	
counting feature	+0.38%	70.04	

ŀ

e del

ure

Flickr30k Entities Recall@1,5,10

Zhang et al. (2016)

SCRC (2016)

DSPE (2016)

GroundeR (2016)

MCB (2016)

CCA (2017)

Yeh et al., (NIPS 2017)

Hinami & Satoh (arXiv 2017)

BAN (ours)

R@1	R@5	R@10
28.5	52.7	61.3
27.8-	_	62.9
43.89	64.46	68.66
48.38	_	_
48.69	_	_
50.89	71.09	75.73
53.97	_	_
65.21	_	_
69.44	86.18	90.35

Flickr30k Entities Recall@1,5,10

	people	clothing	bodyparts	animals	vehicles	instruments	scene	other
#Instances	5,656	2,306	523	518	400	162	1,619	3,374
GroundeR (2016)	61.00	38.12	10.33	62.55	68.75	36.42	58.18	29.08
CCA (2017)	64.73	46.88	17.21	65.83	68.75	37.65	51.39	31.77
Yeh et al. (2017)	68.71	46.83	19.50	70.07	73.75	39.50	60.38	32.45
Hinami & Satoh (2017)	78.17	61.99	35.25	74.41	76.16	56.69	68.07	47.42
BAN (ours)	79.90	74.95	47.23	81.85	76.92	43.00	68.69	51.33

Conclusions

- Bilinear attention networks gracefully extends unitary attention networks, as low-rank bilinear pooling inside bilinear attention.
- Furthermore, residual learning of attention efficiently uses multiple attention maps.
- VizWiz is more challenging than VQA, and it highlights the importance of the reasoning capability of a model.

Thank You! Any question?

The arXiv & code is available at: http://wityworks.com/publication/kim2018ban/ (will appear at **NIPS 2018**!)

Hiring Research Scientist / Engineer / Intern from Seoul! jobs@sktbrain.com

T B SK tel

We would like to thank Kyoung-Woon On, Bohyung Han, and Hyeonwoo Noh for helpful comments and discussion. This work was supported by 2017 Google Ph.D. Fellowship in Machine Learning and Ph.D. Completion Scholarship from College of Humanities, Seoul National University, and the Korea government (IITP-2017-0-01772-VTT, IITP-R0126-16-1072-SW.StarLab, 2018-0-00622-RMI, KEIT-10044009-HRI.MESSI, KEIT-10060086-RISF). The part of computing resources used in this study was generously shared by Standigm Inc.

